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In Situ Geochronology Instrument

Contact
Greg.Cardell@)jpl.nasa.gov

Funding
NASA (UPN632)
NASA (PIDDP)

Objective

Develop technology necessary to
construct an instrument for in situ
analysis of crystallization ages of
igneous rocks.



Conventional Geochronology
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In Situ Geochronology Instrument

Field sampling of rocks.

Separation into
mineral grains.

Measure isotope concentrations using a
high-precision mass spectrometer, such as
this thermal emission-magnetic sector mass
spectrometer at the University of Pittsburgh.

Wet chemistry for
elemental separation.

Generate isochron. . i since crystallization

is extracted from the isochron
using a line fit to the data
points and the known decay

1S08/4S .8
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rates of the parent isotope.
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JPL In Situ Geochronology Instrument
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Advantages

Eliminates wet chemistry by selectively

jonizing only the radiogenic elements. 2pe P
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High ionization efficiency compared to femo
other techniques. P

687.8

Challenges
Develop feasible schemes.

Identify tunable narrow-linewidth
semiconductor lasers having appropriate
wavelengths.
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Rubidium

Calibrate ionization rates for even/odd

isotopes. Strontium
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.IpL In Situ Geochronology Instrument

Laser Ablation

In this process, a pulsed high-power 25 |
laser 1s focused on a rock sample.
Thermal, chemical, and electronic
interactions trigger formation of a 20
plume consisting of atoms, ions,

molecules, clusters, and particulates.

¢ 4 o B )

Albite Augite Diopside

Laser ablation of silicate minerals in &
our laboratory preserved stoichiometry = Labradbrite
of major elements. Z b
T Forsterite

Advantages

. . 5
Direct sampling.
Mechanical simplicity.

0+

Challenges o T
Develop robust high-efficiency laser. Target (At %)
Evaluate effects on elemental and
]S(?t(?pl? stoxchlometry. “Elemental Fractionation in Ultraviolet Laser Ablation
Minimize formation of non-neutral of Igneous Silicate Minerals Relevant to Mars,” M.E,
non-atomic products. Taylor, D.L. Blaney, and G. Cardell, submitted to
Develop feasible scheme for sample Geochimica et Cosmochimica Acta, 1999.

transport into instrument.
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JPL In Situ Geochronology Instrument

Alt_)latlon Vacuum Chamber
V<4 aser lonization Ablation -y
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Rock Sample

The In Situ Geochronology Instrument will use laser
] lonization ablation, laser resonance iqnization, and mass
L spectrometry to sample solid rocks, selectively ionize
- i asers specific elements, and measure the relative quantities of
radiogenic parent-daughter isotopes. Unlike conventional
terrestrial geochronology techniques, the instrument will
not require a chemical separation stage between
sampling and ionization, minimizing complexity and
consumables.
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JPL Laser Ablation Sampling Instrument

Jet Propulsion Laboratory Contact
Maggie Taylor Maggie. Taylor@)jpl.nasa.gov
Greg Cardell
Diana Blaney Funding
NASA (DRDF)

Pacific Northwest National Laboratory

Michael Alexander Objective
Develop technology necessary to
construct an instrument for
sampling of a large number of
igneous rocks.
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.JPL Laser Ablation Sampling Instrument

@ Q)

The primary components of this Mask
Laser

instrument are a pulsed laser, a mask,

and a substrate. Laser ablation is used to Rock
generate plumes comprised of atoms and Sample
particulates. Plume constituents are

transmitted through an aperture in the

mask and deposited onto the substrate.

Prior to ablation of each distinct

geological site, the substrate 1s translated

relative to the mask to provide a distinct

substrate site for deposition. The Challenges
substrate sites are cataloged and
referenced to the corresponding
geological sites. This instrument has the e
potential to collect a large number of thin stoichiometry.

film samples at a low operational cost Balance formation of film and particulates.
per sample. The simplicity of design

minimizes the possibility of malfunction.

Flexible
Substrate

Laser
Optics

Develop robust high-efficiency laser.

Evaluate effects on elemental and isotopic
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= Laser Ablation Sampling Instrument 22}
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Scanning electron micrographs showing particulates produced in vacuum by
laser ablation of (a) albite at 266 nm, (b) albite at 1064 nm, (c) augite at 266 nm,
(d) augite at 1064 nm. The scale bar is 20 um.
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=L Micro Hygrometer

Jet Propulsion Laboratory Contact

Michael Hoenk Michael.E.Hoenk@)jpl.nasa.gov
Greg Cardell

Flavio Noca Funding

Robert Watson NASA (UPN632)

NASA (Atmospheric Science & Remote Sensing)

Objective
To provide an instrument for in situ
analysis of humidity.

8/25/1999 10



10’
10
10
10
10

10

Saturation vapor pressure (mbar)

10

10

8/25/1999

Micro Hygrometer

Liquid water
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Surface Acoustic Wave

Dewpoint Hygrom

eter

Condensation on surface induces
change in surface acoustic wave

frequency.
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.| = Micro Hygrometer

Hygrometer Types

Technology  Principle Advantages
Solid State Change in electronic properties. Compact geometry.

' Low power.
Absorption Optical absorption spectroscopy. Water-specific.
Conventional  Optical scattering induced by Direct measurement.
Dewpoint condensation on a chilled mirror. No hysteresis.
Micro Change in surface acoustic wave Compact geometry.
Dewpoint frequency induced by condensation. Fast response.

Direct measurement.
Wide dynamic range.
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Disadvantages

Slow response. Hysteresis.
Poor reproducibility.
Contamination sensitive.
Low temperature limitation.

Calibration critical.
Contamination sensitive.

Large volume required.

High-mass high-power.
Contamination sensitive.

Contamination sensitive.



SPL
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Temperature Control
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Frequency depends on temperature and
condensation.

Below dewpoint, condensation accumulates.

Abrupt change in slope when ramping through
dewpoint Discrete dewpoint measurement.
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Micro Hygrometer

Frequency Control
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Temperature depends on frequency and
condensation.

Below threshold frequency, equilibrium with
water vapor determines temperature.

Continuous dewpoint measurement.



Radiosonde Flight

Balloon payload and
ground station hardware.

DCS Flight

Prototype validation.

8/25/1999
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Dewpoint / Frostpoint (°C)

Micro Hygrometer

SAW Hygrometers
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Hygrometers
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‘JPL Micro Lidar

Jet Propulsion Laboratory Contact

Robert Menzies Robert. T.Menzies@)jpl.nasa.gov
David Tratt

Greg Cardell Funding

Meng Chiao NASA (UPN632)

Carlos Esproles NASA (PIDDP)

Siamak Forouhar

Hamid Hemmati Objective

Develop technology necessary to
construct an instrument for in situ
profiling of atmospheric boundary
layer wind and dust scattering with
an altitude range of 0-2 km, vertical
resolution of 50m, and LOS velocity
accuracy of 1-2 m/s.
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JPL Micro Lidar
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Prototype System

The transmitted signal is generated through PN-code modulation of a continuous wave laser consisting of a
1.55um photodiode and an erbium doped fiber amplifier. The local oscillator is a portion of the unmodulated
transmitter signal biased by 20MHz using an acousto-optic modulator (for determination of the direction of the
Doppler shift and hence that of the wind). The local oscillator and the received signal are mixed using a beam-
splitter / lens combination. The combined signals are focused onto an InGaAs photodiode, and the beat frequency
and range information are extracted in the digital signal processing system by decorrelation with the original
modulating code. For compactness, the transmitted and received signals use a single telescope, and polarization
dependent optics isolate the signals traveling through the same optical elements.
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. - Micro Lidar
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Signal Processing System

The received signal from the InGaAs photodiode detector passes through a high-speed low-noise
programmable-gain amplifier and is digitized at §0MHz in phase with the PN-code modulation. The sample
data are saved in memory for processing. Data from each PN-code chip are converted (using Fourier
Transforms) into a power spectrum, and the frequency bins corresponding to the chips are then decorrelated
with the original PN-code, yielding a decorrelated power spectrum for each range. The frequency
corresponding to the highest peak in the power spectrum for each bin is returned as the Doppler frequency,
which gives the wind speed.
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Jpl_ \ Micro Lidar

Corner Cube Target
Transmitter Optical Power = 0.9 mw
Integration Time = 20 msec

10 ! ! ! ! l
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Signal spectra (dBm)
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.JPL Atmospheric Electron X-Ray Spectrometer

Jet Propulsion Laboratory
Thomas George

Jason Feldman

Jaroslava Wilcox

Nathan Bridges

California Institute of Technology
Axel Scherer

David Barsic

Naval Research Laboratory
Tim Elam

Langley Research Center
Warren Kelliher
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Contact
Jason.E.Feldman@jpl.nasa.gov

Funding
NASA (UPN632)

Objective

Develop technology necessary to
construct an instrument for in situ
elemental surface analysis.




The Atmospheric Electron X-Ray Spectrometer will use an electron beam to excite characteristic x-

rays for energy dispersive analysis and thin electron-transparent X-ray-transparent membranes to
isolate the electron column and x-ray detector from the planetary atmosphere.

h_-\ A
D)
HIGH VOLTAGE POWER N ELECTRON COLUMN
SUPPLY (HVPS) i
ﬁ ;
ELECTRONICS BOX |~ VACUUM ENCLOSURE

ELECTRON-TRANSMISSIVE
MEMBRANE
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Membrane Fabrication

2eRLBa7 2TV H2T5.© 1 gdun :

Scanning electron micrograph
of a SIN membrane. Step 4: Transfer photoresist pattern
Thickness ~ 200 nm to SiN using reactive ion etching.

Radius ~ 0.5 mm

etching of Si to expose membrane.



JPL _Atmospheric Electron X-Ray Spectrometer
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Challenges

Develop detailed understanding of the instrument operation.
Build stand-alone prototype
Explore other effects, 1.e. cathodoluminescence, imaging etc.
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‘JPL Force Detected Nuclear Magnetic Resonance Spectrometer
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Jet Propulsion Laboratory
T. George

W. Tang

E. Wesseling

A. Chang-Chien

D. Elliott

California Institute of Technology
D. Weitekamp

G. Leskowitz

L. Madsen
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Contact
Thomas.George@jpl.nasa.gov

Funding
NASA (UPN632)

Objective

Develop technology necessary to
construct an instrument for in situ
detection of water and analysis of
mineral composition.



.JPL Force Detected Nuclear Magnetic Resonance Spectrometer

SILICON - 29
Nuclear Magnetic Resonance ALBITE - MICROCLINE

Chemical shifts result from

electronic shielding anisotropies, oo o
dipole-dipole interactions with
nearby nuclei, and quadrupole |
moment interactions. or 17 or 86

I or 33 or 8
4
,
4
’
’ or 100
o AE = hy B or 49
~ .
L LA

. USRS SO s e s s T s
\\\_ e PPM FR;AO:MS ..1 " * PPM ﬂ;;:oms ‘
No field.
Applied magnetic field The three distinct 2°Si NMR lines of Si, Al
causes Zeeman splitting ordered feldspars. The peaks correspond to the
of energy levels. three types of Si sites.

R. J. Kirkpatrick, Rev. in Miner. 18, 341 (1988).
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Techniques

For sample sizes less than 1 mm,
the Force Detection technique has
a higher signal- to-noise Ratio
than the conventional Inductive
Detection technique

8/25/1999
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Farce Detection vs Traditional Detection
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Ferromagnets (A, B, and C) provide a
homogeneous magnetic field at the sample (F).
The sensor magnet (C) is mounted on a membranc
(D) to form a harmonic oscillator. The RF coil (E)
allows for arbitrary NMR pulse sequences,
including a period in which the longitudinal
magnetization is cyclically inverted at the
mechanical resonance frequency to drive the
oscillator. A fiber optic interferometer (G) detects
the oscillator amplitude.

Challenges

Microfabrication of magnets and oscillators.
Handling and locating of samples.
Assembly and testing.




